benzenesulfonate and 1.35 g. (10% excess) of potassium acetate in 25 ml . of acetic acid was heated under reflux for 48 hours. The products were isolated as in the acetolysis of endo-norbornyl-2,3-C ${ }_{2}{ }^{14} p$-bromobenzenesulfonate. ${ }^{3}$ The yield of the mixture of nortricyclyl and exo-dehydronorbornyl acetate was 1.2 g . (63%). The corresponding alcohol mixture (0.76 g .) obtained after lithium aluminum hydride reduction absorbed 17% of a molar equivalent of hyclrogen. The hydrogenation product (0.64 g .) was mixed with 0.70 g . of inactive norborneol and the whole was oxidized with potassium permanganate, giving $0.69 \mathrm{~g} .(60 \%$ based on the norborneol present) of cis-cyclopentane-1,3-dicarboxylic acid. Results of radioactivity analyses of the degradation prodncts are given in Table I.

Solvolysis of exo-Dehydronorbornyl-2,3-C2 ${ }_{2}{ }^{14}$ p-Bromobenzenesulfonate in Formic Acid.-A mixture of 7.0 g . (0.021 mole) of mixed p-bromobenzenesulfonates prepared from the isomerized exo- and endo-dehydronorborneol-2,3$\mathrm{C}_{2}{ }^{14}, 1.45 \mathrm{~g} .(0.021 \mathrm{~mole})$ of sodium formate and 40 ml . of anhydrous formic acid was heated at 45° for 1 hour. The products were isolated as for the acetolysis experiment. The recovered endo-dehydronorbornyl-2,3-C ${ }_{2}{ }^{14}$ p-bromobenzentesulfonate weighed $2.5 \mathrm{~g} .(36 \%)$. The yield of nortricyelyl and exo-dehydronorbornyl formate mixture, b.p.
$60^{\circ}(8 \mathrm{~mm}$.$) , was 1.0 \mathrm{~g} .(34 \%)$. The mixture of formates was converted to the corresponding alcohols which absorbed 4% of a molar equivalent of hydrogen. The hydrogenation product and 0.40 g . of norborneol carrier was oxidized to give 0.40 g . of cis-cyclopentane-1,3-dicarboxylic acid. Degradation and radioactivity assays were carried out the usual way.
endo-Dehydronorbornyl-3-C ${ }^{14}$-amine with Nitrous Acid.The experiment using acetic acid as solvent was carried out as with endo-norbornyl-3-C ${ }^{14}$-amine. ${ }^{3}$ The crude ester from 2.5 g . of endo-dehydronorbornyl-3-C C^{14}-amine and sodium nitrite in acetic acid was cleaved with lithium aluminum hydride and yielded 0.56 g . of mixed alcohols, m.p. 85-95 ${ }^{\circ}$ The product absorbed 17% of one molar equivalent of hydrogen. The hydrogenated material was diluted with carrier exo-norborneol and degraded as before

The aqueous fluoboric acid deamination employed the previously described procedure ${ }^{3}$ and 2.5 g . of amine afforded 0.60 g . of crude alcohol mixture, m.p. $95-103^{\circ}$. On quantitative hydrogenation, 7% of one molar equivalent of hydrogen was absorbed. The reduction product was degraded in the usual way.
Cambridge 39, Mass.

[Contribution from the Department of Chemistry of Purdue University]

A Quantitative Treatment of Isomer Distribution in Aromatic Electrophilic Substitution ${ }^{1,2}$

By Charles W. McGary, Jr., ${ }^{3}$ Y. Okamoto ${ }^{4}$ and Herbert C. Brown Received December 20, 1954

An extension of the Hammett relationship to electrophilic substitution reactions is proposed. It has been demonstrated that the usual side-chain σ_{p} substituent constants are not suitable for such electrophilic reactions. New $\sigma_{\mathrm{p}}{ }^{+}$values are developed which permit the quantitative treatment of directive effects in aromatic substitutions. Good agreement is obtained for para/meta ratios calculated in this way with ratios observed experimentally. Ortho and meta reactivities in electrophilic substitutions generally follow a relationship similar to that previously proposed for para and meta substitution. Only in the case of mercuration, chloromethylation and isopropylation are serious deviations observed. It is proposed therefore that the present quantitative treatment can be extended to include ortho substituents in inany electrophilic aromatic substitutions where the steric factor is either moderate or negligible. The treatment has been extended mathematically to polysubstituted benzene derivatives. It is shown to be identical with the relationship demonstrated previously on an empirical basis for the chlorination and mercuration of the methylbenzenes.

In the development of the theory of aromatic substitution, attention has been directed primarily toward the aromatic component. Thus, orientation and relative rates have been interpreted qualitatively in terms of various electrical and steric effects in the substituent already present. ${ }^{5}$ In general, the effect of the activity of the substituting agent upon isomer distribution has been largely ignored. In a few cases where steric and polar explanations fail, such as in diazonium coupling, ${ }^{\text {ba }}$ such activity has been invoked occasionally to account for ortho/para ratios. ${ }^{6 \mathrm{~b}}$

A detailed discussion of the importance of the activity of the attacking species in controlling the
(1) Directive Effects in Aromatic Substitution. ViI. Previous publications in this series: This Journal, 77, 2300 (1955); 77, 2306 (1955); 77, 2310 (1955)
(2) Based upon a thesis submitted by C. W. McGary, Jr, in partia filfillment of the requirements for the degree of Doctor of Philoso phy.
(3) Purdue Research Foundation Fellow, 1952-1953; American Cyanamid Corp. Fellow. 1953-1954. Research assistant on a grant from the National Science Foundation, 1954
(4) Research assistant on a grant from the Petroleum Research Fiund, 1954-1955.
(\%) C. K. Ingold. • Structure and Mechanism in Organic Chemis try," Cornell University Press. Ithaca, N. Y., 1953. Chapt. Vt.
(i) (a) A. Lapworth and R. Robinson, Mem. Proc. Munchester Lit. and Phil. Soc.. 72, 243 (1928). See p. 264. ref. 4. (h) P. B. D. de la Mare, J. Chem. Soc., 2871 (1949).
para/meta isomer distribution has been presented recently. ${ }^{7.8}$ Thus, it has been shown that in numerous reactions of aromatic nuclei, including chlorination, chloromethylation, base strength, nitration, mercuration and isopropylation of toluene, the orientation can be correlated with the "activity"' or "selectivity" of the attacking species.
It has been demonstrated ${ }^{7.8}$ that these reactions obey the relationship

$$
\begin{equation*}
\log p_{\mathrm{f}}=c \log \left(p_{\mathrm{f}} / m_{\mathrm{f}}\right) \tag{1}
\end{equation*}
$$

where p_{f} and m_{f} are the partial rate factors for substitution in the para and meta positions of toluene and, presumably, of other monosubstituted benzenes. This expression was developed and tested as an empirical relationship. However, the validity of this relationship argues for the existence of a linear free energy expression for aromatic substitution of the same type as that developed by Hammett for side-chain aromatic derivatives

$$
\begin{equation*}
\log \left(k / k_{0}\right)=\rho \sigma^{9} \tag{2}
\end{equation*}
$$

The relationship between the empirical expres-
(7) H. C. Brown and K. L. Nelson, This Journal, 76, 6292 (1953).
(8) H. C. Brown and C. W. McGary, Jr., ibid., 77, 2300, 2306, 2310 (1955).
(9) L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill Book Co., Inc., New York, N. Y., 1940, Chapt. VII,
sion and linear free energy expressions of the Hammett type may be demonstrated simply. Writing the Hammett equation to apply to the partial rate factors for para and meta substitution, we have

$$
\begin{align*}
& \log p_{\mathrm{f}}=\rho \sigma_{\mathrm{p}} \tag{3}\\
& \log m_{\mathrm{f}}=\rho \sigma_{\mathrm{m}}
\end{align*}
$$

Subtracting (4) from (3), we obtain

$$
\begin{equation*}
\log \left(p_{\mathrm{f}} / m_{\mathrm{f}}\right)=\rho\left(\sigma_{\mathrm{p}}-\sigma_{\mathrm{m}}\right) \tag{5}
\end{equation*}
$$

Dividing (3) by (5) we have

$$
\begin{equation*}
\log p_{\mathrm{f}}=\left(\frac{\sigma_{\mathrm{p}}}{\sigma_{\mathrm{p}}-\sigma_{\mathrm{m}}}\right) \log \left(\frac{p_{\mathrm{f}}}{m_{\mathrm{f}}}\right) \tag{6}
\end{equation*}
$$

This equation is identical with (1) with $c=\sigma_{\mathrm{p}}$. ($\sigma_{\mathrm{p}}-\sigma_{\mathrm{m}}$).

It appears reasonable, therefore, that a quantitative treatment of aromatic substitution should be possible. Indeed, Hammett has pointed out previously that the relative reactivities in the nitration of monosubstituted benzene derivatives may be qualitatively correlated with the side-chain σ values. ${ }^{9}$ However, our attempts to develop a quantitative treatment based on these σ-values failed.

It has been observed that the rates of rearrangement of a series of para substituted acetophenone oximes do not follow the σ-values quantitatively and a separate set of values have been proposed for this electrophilic reaction. ${ }^{10}$ Furthermore, Condon has suggested that the σ-values for electrophilic substitutions may differ from those in side-chain reactions, since para and meta reactivities in the halogenation and hydrogen fluoride-boron trifluoride reactions are inconsistent with the Hammett σ-values. ${ }^{11}$

More recently Roberts and his co-workers have looked into the possibility of a quantitative relationship between partial rate factors for nitration and the side-chain σ-constants. ${ }^{12}$ However, large deviations were observed in the case of para substituents. They attributed these deviations to resonance interactions which occur in electrophilic para substitutions, but do not occur to the same extent in the side-chain reactions.

The nature of the problem may be clarified by reference to Table I where the data for thirteen reactions with toluene result in a ratio of $\log p_{f} / \log$ m_{f} of 4.24 ± 0.20. The ratio calculated from the side-chain σ-values for para and meta nethyl groups is 2.46 .

From the foregoing discussion, then, the conclusion follows that in order to correlate reactivity data for electrophilic substitution reactions, substituent constants inust be taken independently from those for side-chain reactions. This conclusion is supported also by the theoretical consideration of resonance factors operating in electrophilic substitution reactions. ${ }^{13}$ Consequently, we undertook to develop a treatment for electrophilic substitution reactions which was independent of sidechain σ-values.

Determination of Reaction and Substituent Constants.-It is assumed that aromatic substitu-
(10) D. E. Pearson, J. F. Baxter and J. C. Martin. J. Org. Chem. 17, 1.111 (1952).
(11) F. E. Condon, This Journal, 74, 2.528 (1952).
(12) J. D. Roberts, J. K. Sanford, F. L. J. Sixma. H. Cerfintain and R. Zagt. ibil., 76, 4525 (19.54).
(13) 1. 1. I. Sixma, Ret. trav. chint. 73, 243 (19.4).

Table I
Partial Rate Factors in Tonueve Substitution

Reaction	Partial rate factors			$\underline{\log p i}$	J.it.
	Of	mif	p	$\log { }^{\prime \prime \prime}{ }^{\text {i }}$	
Chlorination	600	5.0	870	4.21	21
Chloromethylation	117	4.37	430	4.11	7
Basicity					
A, HF	145	3.6	414	4.69	a
$\mathrm{B}, \mathrm{HF}-\mathrm{Br}_{3}$	103	3.1	14.5	4.39	'
Vitration					
A, 18°	43	3.0	85	3.60^{-7}	*
B, 45°	42	2.5	is	4.48	:

Mercuration
A, HClO_{4} catalyzed
$25^{\circ} \quad 4.98 \quad 2.25 \quad 32.9 \quad 4.31 \quad$ \&

B, Same, 500°	4.20	2.41	28.8	3.82	8

$\begin{array}{llllll}\text { C, Same, } 75^{\circ} & 3.24 & 2.23 & 24.5 & 3.99 & 8\end{array}$
$\begin{array}{llllll}\text { D, turcatalyzed, } 50^{\circ} & 4.60 & 1.98 & 16.8 & 4.13 & 8\end{array}$
$\begin{array}{llllll}\text { E, Same, } 70^{\circ} & 4.03 & 1.83 & 13.5 & 4.31 & 8\end{array}$
$\begin{array}{lcllll}\text { F, Same, } 90^{\circ} & 3.51 & 1.70 & 11.2 & 4.5 \overline{5} & 8 \\ \text { Detrimethylsilylation } & 1-5 & 2.0 & 16.5 & 4.04 & \%\end{array}$
$\begin{array}{lccccc}\text { Detrinethylsilylation } & 17.5 & 2.0 & 16.5 & 4.04 & \% \\ \text { Sulfonylation } & 5.44 & 1.67 & 7.99 & 4.05 & \%, \\ \text { Isopropylation } & 0.37 & 1.80 & 4.07 & 2.47^{i} & 4\end{array}$
Isopropylation
$\begin{array}{llll}2.37 & 1.80 & 4.27 & 2.47^{i}\end{array}$
Average 4.24 ± 0.20
${ }^{2}$ Partial equilibrium factors calculated from the clata of M. Kilpatrick and F. E. Luborsky. This Jourval, 75, $577(1953) .{ }^{b} \mathrm{D} . \mathrm{A}$. McCaulay and A. P. Lien, ibid., 73. 2013 (1951). © C. K. Ingold, A. Lapworth, E. Rotlistein and D. Ward, J. Chem. Soc., 1959 (1931). d1F. Cohn, E. D. Hughes, M. H. Jones and M, A. Peeling, Nature, 169, 291 (1952). "Private communication from Professor R. A. Benkeser, Dr. H. R. Krysiak and Mr. O. H. Thomas. f W. E. Truce and C. W. Vriesen, THIS Journal, 75, 5032 (1953). ©S. C. J. Olivier, Rec. trav. chim., 33, 1963 (1914). ${ }^{\hbar}$ F. E. Condon, This Journal, 70,2265 (1948); 71, 3544 (1949). i Data for nitration at 18° and isopropylation are not included.
tion will obey a linear free energy expression of the Hammett type

$$
\begin{equation*}
\log k_{f}=\rho \sigma^{+} \tag{7}
\end{equation*}
$$

where k_{f} is the partial rate factor, ρ is the reaction constant and σ^{+}is a substituent constant applicable to electrophilic aromatic substitution. ${ }^{10}$ The data in Table I show that for such reactions, the following relationship exists between the σ^{+}-values for para and meta methyl.

$$
\begin{equation*}
\frac{\sigma^{+} p-\mathrm{Me}}{\sigma^{+}+\mathrm{Me}}=\frac{\log p_{\mathrm{f}}}{\log m_{\mathrm{f}}}=4.24 \tag{K}
\end{equation*}
$$

The methyl group is of low polarity and of relatively low susceptibility to resonance interactions, particularly in the meta position. Let us assume that the value of $\sigma^{+}{ }_{m-\mathrm{Me}}$ will not differ significantly from1 σ, \ldots Me $(-0.069) .{ }^{14}$ We can im1mediately calculate a value for $\sigma^{+}+\mathrm{Me}(-0.293)$ and values of ρ for the various reactions for which data are available (Table I). These ρ-values are summarized in Table II.

It should be emphasized that sufficient data are now available to permit the determination of ρ only from substitution data for para and meta to methyl. However, it may be seen from the low mean deviations in Table II that the agreement is excellent with but two exceptions, isopropylation and the meta value for nitration at 18°. These data are the numerical expression of the empirical relationship previously observed (equation 1). ${ }^{7.8}$
(14) H. H. Jaffe, Chem. Ke:s., 53, 191 (1953),

Table II
Reactiox Constants for Electrophilic Substitution in Substituted Benzene Derivatives

Reaction	Conditions	Reaction constants			
		$\rho_{\text {m }}$	ρ_{p}	ρ	
Chlorination	Cl_{2} in HOAc at 24°	-10.13	-10.05	-10.09 ± 0.04	
Chloromethylation	$\mathrm{CH}_{2} \mathrm{O}$ in HOAc at 60° with HCl and ZnCl_{2}	- 9.28	- 9.00	$-9.14 \pm$. 14
Basicity	A, HF	-8.06	-8.94	$-8.50 \pm$. 49
	$\mathrm{B}, \mathrm{HF}-\mathrm{BF}_{3}$	-7.12	-7.39	$-7.26 \pm$. 14
Nitration	$\mathrm{A}, \mathrm{AcONO}_{2}$ in $\mathrm{Ac}_{2} \mathrm{O}$ at 18°	-6.91	- 5.95	$-6.43 \pm$. 48
	$\mathrm{B}, \mathrm{HNO}_{3}$ in $90 \% \mathrm{HOAc}$ at 45°	-8.75	- 6.03	$-5.90 \pm$. 13
Mercuration	A, $\mathrm{Hg}(\mathrm{OAc})_{2}$ in HOAc at 25° with HClO_{4}	-5.10	-5.19	$-5.15 \pm$. 0
	B, $50{ }^{\circ}$	-5.54	- 4.99	$-5.27 \pm$	28
	C, 75°	-5.04	-4.75	$-4.90 \pm$. 15
	D, $\mathrm{Hg}(\mathrm{OAc})_{2}$ in HOAc at 50°	-4.30	-4.19	$-4.25 \pm$. 06
	$\mathrm{E}, 70^{\circ}$	-3.80	- 3.86	$-3.83 \pm$. 03
	F, 90°	-3.33	-3.59	$-3.46 \pm$. 13
Detrimethylsilylation	$\mathrm{ArSi}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$in HOAc at 25°	-4.36	-4.16	$-4.26 \pm$. 10
Isopropylation	$\mathrm{C}_{3} \mathrm{H}_{6}$ at 40° with AlCl_{3}	-3.65	-2.15	$-2.90 \pm$. 75

The ρ_{p}-value for nitration with acetyl nitrate in acetic anhydride at $18^{\circ 15}$ agrees closely with the ρ_{m} and ρ_{p}-values for nitration with nitric acid in 90% acetic acid at 45° (Table II). We therefore may conclude that the ρ-values for these two reactions will not differ greatly and adopt the average value of -5.92 ± 0.10 for these nitration reactions.

It is now possible to calculate $\sigma^{+} m^{-}$and $\sigma^{+}{ }_{p}$-values for substituents other than methyl by utilizing the available partial rate data for nitration of monosubstituted benzene derivatives. The σ^{+}-values obtained in this way are listed in Table III together with the corresponding σ-values. ${ }^{14}$

Table III
Comparison of Substituent Constants for Electrophilic and Side-chain Reactions

Substituent	σ^{+}	σ^{a}	$\sigma^{+}-\sigma$	Lit. ref.
$m-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	-0.102	-0.120	0.018	b
$m-\mathrm{CH}_{8}$	$-.0672$	$-.0690$. 002	b
$m-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. 0109			c
$m-\mathrm{CH}_{2} \mathrm{Cl}$. 144			c
m-I	. 325	. 352	$-.027$	12, ${ }^{\text {e }}$
$m-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	355	. 398	-. . 043	${ }^{\prime}$
$m-\mathrm{Br}$. 507	. 391	116	$12^{d, e}$
$m-\mathrm{Cl}$. 520	. 373	147	$12^{\text {d,e }}$
$p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{8}$. 317	. 197	. 120	b
$p-\mathrm{CH}_{3}$. 297	. 170	-. 128	b
$p-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{6}$	-. 172			c
$p-\mathrm{CH}_{2} \mathrm{Cl}$. 00372	. 184	-. 180	c
p-I	. 0175	. 276	-. 258	12^{2}
$p-\mathrm{Cl}$. 149	. 227	-. 078	$12^{\text {d,e }}$
$p-\mathrm{Br}$. 167	232	-. 065	$12^{d . e}$
$p-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{8}$. 514	. 522	-. .008	f
		. $678\left(\sigma^{*}\right)^{g}$	-. 164	

${ }^{a}$ The σ-values are from ref. 14. ${ }^{b}$ Table I, ref. $d .{ }^{c}$ C. K. Ingold and F. R. Shaw, J. Chem. Soc., 575 (1949). ${ }^{d}$ M. L. Bird and C. K. Ingold, ibid., 918 (1938). e Data obtained with acetyl nitrate in nitromethane. It is assumed that $\rho=-5.92$, as for acetyl nitrate in acetic anhydride. / C. K. Ingold and M. S. Smith, ibid., 905 (1938). OIt has proven necessary to assign two different values of σ for substitutents in the para position which are capable of resonance interactions (ref. 14).

Roberts and his co-workers ${ }^{12}$ have pointed out recently that electrophilic reactivities in the meta position parallel the meta σ-values quite closely.
(15) We consider the discrepancy in the $\sigma \mathrm{m}$ value in this reaction
to experimental difficulties in analyzing for small quantities of the meta
isomer. For example, the formation of 3.5% of m-nitrotoluene instead of 4.1% reported would eliminate the discrepancy.

In Fig. I there are plotted the σ^{+}-values versus the σ-values. The values for the meta constants follow the relationship

$$
\sigma_{\mathrm{m}}^{+}=0.902 \sigma_{\mathrm{m}}
$$

In view of the large uncertainty in the experimental data from which the $\sigma^{+}{ }_{m}$ constants were derived, it appears reasonable to assume that the $\sigma^{+}{ }_{\mathrm{m}}$-values are identical with the corresponding Hammett σ_{m} values.

$$
\begin{equation*}
\sigma_{\mathrm{m}}^{+}=\sigma_{\mathrm{m}} \tag{9}
\end{equation*}
$$

On the other hand, there is a significant difference between the σ^{+}p and the corresponding σ_{p}-values (Table III, Fig. 1).

Fig. 1.- Comparison of σ^{+}- and σ-constants.
An Empirical Approach to σ^{+}-Values.-It would be highly desirable to have good quantitative data to permit the accurate determination of σ^{+}-values and their utility in the proposed quantitative
treatment of aromatic substitution. ${ }^{16}$ However, such data are not now available. In the absence of such data, it has appeared necessary to develop an empirical procedure for the estimation of the σ^{-}values.

It was pointed out by Roberts and his co-workers 12 that electrophilic reactivities in the para position are far greater than one would predict on the basis of the σ_{p}-values. These deviations were interpreted in terms of resonance interactions which occur in electrophilic substitutions but do not occur to the same degree in side-chain reactions.

In the case of the p-carbethoxy group, however, the point was observed to fall on the meta line. It therefore was concluded that little or no resonance differences were apparently involved between the two reaction types for this and similar substituents.

There would appear to be serious difficulties with this interpretation. The σ-values for meta and para carboxyl groups are 0.355 and 0.265 , respectively. On the basis of no resonance differences, one would predict from these values that benzoic acid would be para-rather than meta-directing, as it actually is. This argument may be extended to the cyano, nitro and formyl groups. Therefore, it appears highly improbable that such σ_{p}-values may be used to estimate σ^{+}-values from the line defined by the meta values.

It is now well established that many para substituents possess two σ-values, ${ }^{9.14}$ each of which depends upon the particular reaction under consideration. The values referred to in the above discussion were the lower values (σ) which in general apply to reactions with no important resonance interaction between substituents. By utilizing the higher of the two values $\left(\sigma^{*}\right)$ for the carboxyl, cyano, nitro and formyl groups, qualitative agreement may be obtained between the σ-values and the experimentally observed orientation. For example, σ_{p}^{*} is $0 . \overline{2} 28$ for the carboxyl group. With the value of σ_{m} of 0.355 , it would be predicted that meta orientation will predominate.

By utilizing the σ^{*}-value for the carbethoxy group, the available σ^{+}-values yield a reasonably good linear relationship (Fig. 1)

$$
\begin{equation*}
\sigma_{\mathrm{p}}^{+}=0.956 \sigma^{(*)}-0.134 \tag{10}
\end{equation*}
$$

In view of the large uncertainty in the available data, we are probably justified in assuming that the slope may be unity so that the relationship may be taken as

$$
\begin{equation*}
\sigma_{p}^{+}=\sigma^{(*)}{ }_{p}-0.1,34^{17} \tag{11}
\end{equation*}
$$

With the aid of equations 9 and 11, values of σ^{+} may be calculated for a number of substituents. Values of σ^{+}obtained in this manner are summarized in Table IV.
Application to Para/Meta Ratios in Monosubstituted Benzenes.--Para;meta ratios may be (16) We have developed a method of determining such σ^{*}-valines and are actively applying it to obtain accurate valnes of these constants. Work in progress with Y. Okamoto.
(17) From the values of $\sigma_{p}{ }_{p}-\sigma^{(*)}$ in Table III, the relationship should be $\sigma_{p}^{+}=\sigma^{(*)}{ }_{p}-0.142+0.051$. The σ^{*}-value for p-iodo differs considerably from this relationship. Moreover, the rate of reaction of iodobenzene relative to benzene (ref. 12) is not consistent with similar data reported by Bird and Ingold (Table III, ref. d) for chloro- and bromobenzene in acetic anhydride and in nitromethane. If this valine of σ^{+}p is omitted from the average, the relationship becomes $\sigma{ }_{\mu}=\sigma^{*}{ }_{1}$, $-0.124-0.036$.

Snbstituent	Table IV			
	Caiculated Values of σ^{+a} Substituent constants"			
	б., ,	σ_{p}	σ^{*} p	σ^{+}
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}+$	0.904	0.859		0.725
NO	. 710		1.270	1.136
CN	. 678		1.000	0.866
$\mathrm{SO}_{2} \mathrm{CH}_{3}$. 647		1.049	915
CF_{3}	+17	0.551		417
CHO	. 3×1		1.196	992
$\mathrm{CO} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{4}$	31)		0.678	, 44
$\mathrm{CO} \mathrm{CH}_{2}$	31.5		6336	502
$\mathrm{CO} \mathrm{OH}^{\text {H }}$	8.3 .5		729	504
CONH.	280		$1: 27$	49:\%
F	:	()63		- .072
C1	:17\%	22		099:
Rr	(3) 1	2:2		(1)9x
I	352	276		. 142
$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	217	. 078		- .0.54
CH ,	. 069	. 1711		. 304
$\mathrm{C}_{2} \mathrm{H}_{5}$. 043	$-.151$		- 285
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	- .120	. 1197		3331
$\mathrm{C}\left(\mathrm{CH}_{y}\right)_{2} \mathrm{COOH}$. 025	-. 066		.300
$\mathrm{Si}(\mathrm{CH})_{3}$. 121	- . 072		20)(i
OH	- .0022	-. 357		491
NH,	- . 161	- .660		- . $79+4$

${ }^{2}$ Values of σ and σ^{*} from ref. 14 .
calculated from these values of the substituent constants and the previously calculated values of the reaction constants (Table II) with the aid of equatim 1?

$$
\begin{equation*}
\log \underset{\text { met: }}{\text { para }}=\rho\left(\sigma_{p}^{+}-\sigma_{0}\right)-\log 2 \tag{12}
\end{equation*}
$$

Unfortunately, reasonably good data for para/meta isomer distributions are now available only for the nitration reaction. Accordingly, we have restricted the present treatment to comparison of the calculated and experimental values for the parai meta ratios obtained in the nitration reaction.
The results are summarized in Table V.
It should be emphasized that these nitration data were obtained under a wide variety of experimental conditions. We have demonstrated recently that the activity and selectivity of a substitution reaction may be modified greatly by changes in the experimental conditions. ${ }^{8}$ Consequently, the use of the single reaction constant, -5.92 , for the different nitration conditions introduces a further error of uncertain magnitude.

Considering the uncertainty in the empirically derived σ^{+}-values, the probable error in the experimental isomer distributions and the widely differing experimental reaction conditions (which should result in variations in ρ), it would appear that the agreement between the calculated and experimental ratios is quite good for most of the compounds. Only in the case of benzaldehyde, aniline, trimethylsilylbenzene, benzotrifluoride and phenyltrimethylammonium ion do the experimental ratios differ very seriously from the calculated values.
In the case of benzaldehyde, the disagreement may be due to the σ^{*}-value listed for the CHO group. ${ }^{14}$ This value is based on a single observation and is unusually high (σ^{*} p 1.126) as compared to the accepted σ-value for this group ($\sigma_{\mathrm{p}} 0.216$).

Table V
Comparison of Calculated Para/Meta Nitration Ratios with Experimental Values

Substituent	-	Isomer distribution	p	Ref.	$\text { Expt. }{ }^{\text {Pard }}$	rati', Caled.	
NO_{2}	46.4	93.2	<0.25	${ }^{a}$ (1)	<0.0027	0.0015	
	4.8	93.5	1.7	${ }^{*}(2)$. 018		
CN	17	81	<2	"	$<.025$. 036	
$\mathrm{SO}_{2} \mathrm{CH}_{3}$...	98.5		"	$<.015$. 013	
CHO	~ 19	72	~ 9	"	$\sim .13$. 00012	
$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	24.1	72.0	4.0	"	. 056	. 069	
	28.3	68.4	3.3	'(1)	. 048		
	27.7	66.4	5.9	${ }^{\prime}(2)$. 089		
$\mathrm{CO}_{2} \mathrm{CH}_{3}$	25.7	69.8	4.5	${ }^{\prime}(3)$	064	. 040	
COOH	18.5	80.2	1.3	${ }^{\prime}(4)$. 016	. 019	
	22.3	76.5	1.2	${ }^{\prime}(5)$. 015		
CONH_{2}	~ 27	70	~ 3	a	$\sim .043$. 027	
$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$		2.6	97.4	${ }^{\text {h. }}$ (1)	37.5	20.0	
NH_{2}	1.4	47	51.3	${ }^{h}(2)$	1.09	2800	
F	12.4	0.2	87.4	${ }^{i}$	440	110	
Cl	29.6	0.9	69.5	${ }^{j}$	77	23	
	30.2	0	69.8	${ }^{6}(1)$	Large		
	29.8	0.3	69.9	${ }^{i}$	233		
Br	36.5	1.2	62.3	i	52	27	
	42.0	0	58.0	${ }^{k}(2)$	Large		
	37.6	0.3	62.1	-	207		
I	41.8	1.5	56.7	i	33	8.7	
	34.2		65.8	i	Large		
$\mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$	27	8	65	${ }^{2}$	8.1	5.3	
CH_{3}	58.4	4.4	37.2	${ }^{m}$ (1)	8.45	12.0	
	58.5	4.4	37.1	${ }^{m}(2)$	8.43		
	58.54	4.40	37.15	n	8.44		
$\mathrm{C}_{2} \mathrm{H}_{5}$	45	6.5	48.5	\cdots	7.45	13.0	
	5		45	n	Large8.1		
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	30.0	7.7	62.3	"			
	14		86	"	Large		
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	12.0	8.5	79.5	'	9.3	8.9	
	15.8	11.5	72.7	*	6.3		
OH	40	. .	60	'	Large	390	
$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$	30	40	30	"	0.750	0.16	
	26.6	41.7	31.6	${ }^{v}$ (1)	. 760		
	32.5	34.7	32.7	${ }^{v}(2)$. 940		
CF_{3}	. . .	89	w	$<.12$	0.49	
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$. . .	100	. .	x	Small	5.9	

${ }^{a}$ A. F. Holleman and B. R. de Bruyn, Rec. trav. chim., 19, 79 (1900): (1) witli nitric acid at 0°; (2) with nitric and sulfuric acid at 0°. b J. W. Baker, K. E. Cooper and C. K. Ingold, J. Chem. Soc., 426 (1928); with nitric acid at 0°. ${ }^{c}$ W. A. Baldwin and R. Robinson, ibid., 1445 (1932): with nitric acid at 18°. ${ }^{d}$ D. L. Brady and S. Harris, ibid., 123, 484 (1923); J. W. Baker and W. G. Moffitt, ibid., 314 (1931): with nitric acid at 5°. ${ }^{\circ} \mathrm{C}$. K. Ingold and M. S. Smith, ibid,, 905 (1938): with nitric acid in acetic anhydride at 18°. f A. F. Holleman, Rec. trav. chim., 18, 267 (1899): with nitric acid (heterogeneous) (1) at 0°, (2) 30°, (3) 30°, (4) 0°, (5) $30^{\circ} . \circ \mathrm{K}$. E. Cooper and C. K. Ingold, J. Chem. Soc., 836 (1927): with nitric acid at -15°. ${ }^{h}$ A. F. Holleman, Chem. Revs., 1, 187 (1925): (1) with sulfuric acid and nitric acid; (2) with 96% nitric acid at -20°. i A. F. Holleman, Rec. trav.chim., 24, 140 (1905): with nitric acid at 0°. ${ }^{i}$ Ref. 12 : with acetyl nitrate in nitromethane at $25^{\circ} .{ }^{k} \mathrm{M}$. L. Bird and C. K. Ingold, J. Chem. Soc., 918 (1938) : with acetyl nitrate at 25° (1) in nitromethane, (2) in acetyl anhydride. ${ }^{i}$ J. W. Baker, K. E. Cooper and C. K. Ingold, ibid., 426 (1928): with nitric acid at -30°. ${ }^{m}$ C. K. Ingold, A. Lapworth, E. Rothstein and D. Ward, ibid., 1959 (1931): (1) with acetyl nitrate at 30°, (2) with nitric acid at $30^{\circ} .{ }^{n} \mathrm{~W}$. W. Jones and M. Russell, ibid., 921 (1947): with nitric acid and sulfuric acid at $30^{\circ} .{ }^{\circ} \mathrm{H}$. C. Brown and W. H. Bonner, This Journal, 76, 605 (1954): with nitric acid and sulfuric acid at $25-40^{\circ}$. \quad E. L. Cline and E. E. Reid, ibid., 49, $3150(1927) .{ }^{q}$ G. Vavon and A. Collier, Bull. soc. chim., 49, $3150(1927)$. ${ }^{r}$ H. Cohn, E. D. Hughes, M. H. Jones and M. A. Peeling, Nature, 169,291 (1952): with nitric acid in 90% aq. acetic acid at 45°. ${ }^{8}$ K. L. Nelson and H. C Brown, This Journal, 73, 5605 (1951): with nitric acid and sulfuric acid at $25-40^{\circ}$. ' Values for isomer distribution taken from ref. h; W. Körner, Gazz. chim. ital., 4, 305, 446 (1874), ref. $j .{ }^{u}$ R. H. Benkeser and P. E. Brumfield, This Journal, 73, 4770 (1951): with cupric nitrate in acetic anhydride at $30-40^{\circ} . v^{v} \mathrm{~J}$. L. Speier, ibid., 75, 2930 (1953); with fuming nitric acid (1) at $0-10^{\circ},(2)$ at $25-70^{\circ}$. ${ }^{w}$ G. C. Finger, N. H. Nachtrieb and F. H. Reed, Trans. Ill. State Acad. Sci., 31, 132 (1938); C. A., 33, 6271 (1939): with concd. nitric acid and sulfuric acid. ${ }^{x}$ D. Vorländer and E. Siebert, Ber., 52, 283 (1919).

In the case of aniline, the discrepancy presumably arises from the fact that the molecular species undergoing nitration is not aniline, but is anilinium ion.

In the remaining three compounds the discrepancy may indicate a breakdown in the empirical
method for obtaining σ^{+}-values, and the discrepancy may disappear with the availability of experimental σ^{+}-values. We are currently engaged in determining experimental σ^{+}-values for these groups. ${ }^{16}$

In view of the large measure of agreement despite
the various uncertainties, the present approach must be considered quite promising for the development of a truly quantitative theory of directive effects in aromatic substitution.

Application to Ortho Substitution.-The question of ortho substitution is in general a complex one. For side-chain reactions, no linear relationship is observed between either two reaction series or two substituent series and quantitative treatments are consequently limited. ${ }^{18}$ However, it may be seen in Fig. 2 that a linear relationship is followed for toluene substitution data, except for chloromethylation, mercuration and isopropylation. Apparently then, these reactions have steric requirements in excess of those of other reactions, such as chlorination, nitration and methylation, which show no ortho deviation. ${ }^{19}$

Fig 2.-Comparison of ortho and metu partial rate factors.
Two treatinents appear possible for ortho reactions. For reactions such as chlorination and nitration which exhibit no significant ortho effects, the ρ-values will be identical with tlose for the meta and para substituents, provided the substituent is one with only moderate steric requirements. Such reactions could be used to establish the $\sigma^{-{ }_{0}}{ }^{-}$ values. However, in the case of mercuration, chloromethylation and isopropylation and other reactions with large steric factors, ρ_{0} would differ from ρ (equation 13).

$$
\begin{equation*}
\log o_{\mathrm{f}}=\rho_{0} \sigma_{\mathrm{n}}^{-1} \tag{1,9}
\end{equation*}
$$

Alternatively, Taft's equation 14 could be applied in a similar manner, the two systems being related by equation 15.
(18) R. W. Taft, Jr., This Journal, 75, 4231 (1953); 74, 2729 (1952): 74, 312f; (1952).
(19) It may be noted that the isopropylation data are not satisfac(,,ry even fur the treatment involving only para and meta methyl sub-
 with C. $12, \sin v e r$.

$$
\begin{equation*}
\log o_{\mathrm{f}}=\rho \sigma^{+}{ }_{0}+E_{\mathrm{s}} \tag{14}
\end{equation*}
$$

In this paper, the first treatment has been adopted. In this way calculation of the $\sigma^{+}{ }_{n}$-value for methyl leads to the values of $-0.275,-0.274$ and -0.277 for the chlorination, nitration $\left(4 j^{\circ}\right.$; and basicity $\left(\mathrm{HF}-\mathrm{BF}_{3}\right)$ reactions, respectively. The results are summarized in Table VI.

Table \I
Substitcent and Reaction Constants fur Ortho Sulb. siltution Reactions

Reaction	$\rho-$	Substituent	σ
Chlorination	-10.09	CH_{3}	-0.276
Chloromethylation	-7.49	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{HI}_{5}$	-.112
Basicity		$\mathrm{CH}_{2} \mathrm{Cl}$.0908
A, HF	-.3 .50	I	.101
B, $\mathrm{HF}-\mathrm{BF}:$	-7.26	Br	.258
Nitration	-5.92	Cl	263
Detrimethylsilation	-4.51	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$.437
Mercuration			
\quad A, HClO			
$\quad 25^{\circ}$			
B, Uncatalyzed, 50°	-2.40		

These reaction and substituent constants should permit calculation of complete isomer distributions for reactions and substituents of low or moderate steric requirements. ${ }^{20}$ However, in the absence of satisfactory data for reactions other than nitration, it does not appear desirable to explore this approach further at this time.

It is interesting to consider the effect of the ortho factor on linear relationships of the type here considered. If one plots the logarithms of the relative rates for two reactions which have no significant ortho effect, a single straight line will be obtained. On the other hand, if a similar plot is made for two reactions which have unequal ortho effects, three parallel straight lines are obtained, one for positions having no ortho groups, a second for those having one ortho group and a third for those having two or tho groups.

The situation is illustrated in Fig. 3 where the values compared have been calculated from data in Table I for the two reactions: perchloric acidcatalyzed mercuration at 25° and the hydrogen fluoride--boron trifluoride basicity reaction.

Theoretical justification for this observation may be noted in the derivation

$$
\begin{equation*}
\log k_{\mathrm{i}}=\rho \Sigma \sigma^{+}{ }_{\mathrm{w}, \cdot,},+\rho_{0} \Sigma \Sigma_{\mathrm{i}} \sigma_{1} \tag{16}
\end{equation*}
$$

But since $\log _{5} k_{\mathrm{j}}{ }^{0}=\Sigma \sigma^{-{ }^{-1 n, \mathrm{p}}}+\Sigma \sigma^{+}{ }_{0}$

$$
\begin{equation*}
\log k_{\mathrm{i}}=\rho \log k_{i}^{1}+\left(\rho_{;}-\rho\right) \Sigma \sigma^{+} \tag{17}
\end{equation*}
$$

Thus the three parallel straight lines of slope ρ have the intercepts zero, $\left(\rho_{0}-\rho\right) \sigma^{+}{ }_{0}$ and $2\left(\rho_{0}-\right.$ p) $\sigma^{+}{ }_{0}$ (Fig. 3).

It can be shown in a similar niamer that if no correlation exists annong the para, meta and ortho factors, six straight lines may be drawn each of which connects points corresponding to positions
(20) In many cases it is ofserved that much greater amounts of the orth, than para isomers are formed (Table V). This phenomenon is due presumably to coordination of the electrophilic reagent with the sutsstituent followed by an enhancerl rate of attack of the ortho position. This phenomenon will introfuce an additional factor to be con-
 wh:" sulstitution
which vary only in one particular partial rate factor. The criterion as to whether one, three or six straight lines will be obtained is determined by whether two, one or none, respectively, of the following relationships hold.

$$
\begin{equation*}
\frac{\log p_{f}}{\log p_{f}{ }^{0}}=\frac{\log m_{\mathrm{f}}}{\log m_{\mathrm{f}}^{0}}=\frac{\log o_{f}}{\log {o o_{f}^{0}}^{0}} \tag{18}
\end{equation*}
$$

Application to Polysubstituted Benzenes.-An extension of the Hammett equation to polysubstituted benzene derivatives has been made for side-chain reactions. ${ }^{14}$ In the case of electrophilic substitution, assuming additivity in the substituent constants, the equation may be written

$$
\begin{equation*}
\log k_{\mathrm{j}}=\rho^{+} \sum_{\mathrm{i}} \sigma^{+} \tag{19}
\end{equation*}
$$

where $\sum_{i} \sigma_{i}$ is the summation of substituent constants of the various substituents located on the ring and k_{j} is the rate of substitution in a given position relative to one position in benzene. By recalling the relationships between the partial rate factors and their respective σ^{+}ivalues and by solving for k_{j} and adding the rates of all available positions, we obtain

$$
\begin{align*}
k_{\mathrm{t}}=\sum k_{\mathrm{j}} & =\sum \mathrm{e}^{\mathrm{e}^{+}} \sum_{\mathrm{i}} \sigma^{\sigma_{\mathrm{i}}} \\
& =\sum \prod_{i}^{e^{+} \rho_{\sigma}{ }_{\mathrm{i}}} \\
k_{\mathrm{t}} & =\sum \prod_{\mathrm{f}}^{k_{\mathrm{f}}} \tag{20}
\end{align*}
$$

where k_{t} is the over-all rate of substitution in the substituted aromatic relative to one position in benzene and k_{f} is the partial rate or equilibrium factor. In the case of m-xylene, for example, k_{t} is $o_{\mathrm{f}}{ }^{2}+$ $2 o_{\mathrm{f}} p_{f}+m_{\mathrm{f}}{ }^{2}$. Consequently, from a knowledge of the partial rate factors, it is possible to calculate the relative rates of any polysubstituted benzene derivative.

Using equations of the above type, Condon ${ }^{21}$ has calculated the relative rates in the chlorination of the methylbenzenes. He also has utilized the reverse procedure in calculating the partial basicity factors from the data on the reaction of hydrogen fluo-ride-boron trifluoride with the methylbenzenes. ${ }^{11}$

In the preceding paper of this series we have demonstrated that the relative rates of mercuration of all of the isomeric methylbenzenes can be calculated with considerable precision from partial rate factors. ${ }^{22}$ It also has been observed empirically that the logarithms of the relative rates of halogenation and the relative basicities (hydrogen fluoride-boron trifluoride) of the methylbenzenes are linearly related. ${ }^{11,23}$
It is important that these empirical relationships can be shown to follow from the present treatment.
Thus, since $\sum_{i} \sigma^{+}{ }_{i}$ will be the same for individual comparisons, the following relationship exists

$$
\begin{equation*}
\log k_{j}=\left(\rho / \rho^{\prime}\right) \log k_{j}^{\prime} \tag{21}
\end{equation*}
$$

where k_{j} is the relative rate of reaction at one site, $k_{j}{ }^{\prime}$ is the same for the comparison reaction, and ρ and ρ^{\prime} are the reaction constants for the two reac-
(21) F. F. Condon, This Joursal, 70, 1963 (1948)
(22) H. C. Brown and C. W. MeGary. Jr., ibid., 77, 2310 (1955).
(23) H. C. Brown and J. D. Brady, ibid., 74, 3570 (1952)

Fig. 3.-Relationship between the partial relative rates in the basicity and mercuration of methylbenzenes.
tions. For all available positions, however, the equation becomes

$$
\begin{align*}
& k_{\mathrm{t}}=\Sigma k_{\mathrm{j}}=\Sigma\left(k_{\mathrm{j}}^{\prime}\right) \rho / \rho^{\prime} \tag{22}\\
& \log \Sigma k_{\mathrm{j}}=\log \Sigma k_{\mathrm{j}}^{\prime} \rho / \rho^{\prime} \tag{23}
\end{align*}
$$

To be consistent with the empirical linear relationship, equation 23 should be in the form

$$
\begin{equation*}
\log \Sigma k_{\mathrm{j}}=\left(\rho / \rho^{\prime}\right) \log \Sigma k_{\mathrm{j}}^{\prime} \tag{24}
\end{equation*}
$$

The condition for such a relationship to hold is that ρ / ρ^{\prime} should be nearly unity or that one term in the summation should be large. Apparently one or both of these conditions must be responsible for the excellent quantitative relationship observed in the chlorination and basicity reactions ($\rho=-10.09$ and -7.26 , respectively). However, this derivation suggests that the empirical linear relationship may not be completely general.
Conclusions.--The Hammett equation, with the modifications here introduced, appears capable of correlating the available data on electrophilic aromatic substitutions. The treatment offers promise of providing a truly quantitative approach to isomer distribution in aromatic substitution.

A great deal of quantitative data on aromatic substitution will be required to test the approach presented in this paper. We wish at this time to encourage other workers to undertake research in this area in order that a rigorous test of the utility of the treatment may soon be possible.
Acknowledgment.-We wish to acknowledge the financial support of the Purdue Research Foundation, the American Cyanamid Corporation, the National Science Foundation and the Petroleum Research Fund which made this study possible.
Lafayette, Indiana

